I took the day off and sat in front of my fish tank. And then started to wonder. Why do fish keep moving? The seemingly random constant movements of fish are actually precisely calculated to provide, at any moment, the sensory feedback they need to navigate their world, research suggests. The finding, which appears in Current Biology, enhances our understanding of active sensing behaviors performed by all animals, including humans, such as whisking, touching, and sniffing. It also demonstrates how robots built with better sensors could interact with their environment more effectively.
For humans, active sensing includes feeling around in the dark for the bathroom light or bobbling an object up and down in our hands to figure out how much it weighs. We do these things almost unconsciously, and scientists have known little about how and why we adjust our movements in response to the sensory feedback we get from them.
To answer the question, researchers studied fish that generate a weak electric field around their bodies to help them with communication and navigation. The team created an augmented reality for the fish so they could observe how fish movements changed as feedback from the environment changed.
Inside the tank, the weakly electric fish hovered within a tube where they wiggled back and forth constantly to maintain a steady level of sensory input about their surroundings.
Researchers first changed the environment by moving the tube in a way that was synchronized with the fish’s movement, making it harder for the fish to extract the same amount of information they had been receiving. Next, the researchers made the tube move in the direction opposite the fish’s movement, making it easier for the fish.
In each case, the fish immediately increased or decreased their swimming to make sure they were getting the same amount of information. They swam farther when the tube’s movement gave them less sensory feedback and they swam less when they could get could get more feedback with less effort. The findings were even more pronounced in the dark, when the fish had to lean even more on their electrosense.
Well, if there is any lesson to learn like this then realise that change is the only constant and keep moving! But once in a while, please do some time to rest…
Check out my related post: Why do people fish?
Interesting reads:
https://animals.mom.me/why-do-fish-move-rocks-in-an-aquarium-12232691.html
https://pethelpful.com/fish-aquariums/Glass-Surfing-Why-Do-Fish-Swim-Up-Down
https://www.quora.com/Do-fish-ever-stop-swimming
https://animals.howstuffworks.com/fish/sharks/shark-drown.htm
https://curiosity.com/topics/theres-a-good-reason-fish-never-quit-wiggling-curiosity
https://news.wisc.edu/curiosities-why-do-sharks-have-to-swim-constantly/
I think you may be misinterpreting the article.
Fish that generate an electric field are several species of fish primarily from the Amazon river (they are also found in Africa). These fish have very primitive and undeveloped eyesight and therefore instead of sight, use electrical fields as a sensory organ.
LikeLiked by 2 people
Hmm, you may have a point. Thanks!
LikeLike